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1 Introduction

One technique which can be very useful in solving number theory problems is the use of polynomial division.

With some careful algebra and a will to carry on, you can solve some difficult problems without any tricky

ideas. The general setup is when you know that a quotient of two expressions is an integer. The method you

use is to find an approximation to what the quotient should be, ideally involving “nice” terms and a “nasty”

term, where the nasty term is small. We then impose the conditions of the quotient being in Z to deduce

what the nasty term should be, and then we have nice algebraic equations to work with.

A classical example looks like the following: Find all integers x such that

3x3 − 5x + 1

2x− 1
= Q ∈ Z.

For this problem, it’s best to multiply by 8 to get

8Q =
24x3 − 40x + 8

2x− 1
= 12x2 +

12x2 − 40x + 8

2x− 1
= 12x2 + 6x +

−34x + 8

2x− 1
= 12x2 + 6x− 17 +

−9

2x− 1

Since Q, x are integers, we see that −9
2x−1 is an integer, which reduces us to finitely many cases: 2x − 1 =

−9,−3,−1, 1, 3, 9, so x = −4,−1, 0, 1, 2, 5. In each of these cases we have shown that 8Q ∈ Z, but since

the denominator of Q in lowest terms is a divisor of 2x − 1 which is odd, this implies that Q ∈ Z. Thus

x = −4,−1, 0, 1, 2, 5 is the set of solutions.

2 An Example

Let’s go on to a more difficult example: the famous IMO 1988 problem 6: Let a, b be two positive integers

such that ab + 1 | a2 + b2. Prove that
a2 + b2

ab + 1

is a perfect square. The normal technique used to solve this problem is Vieta jumping. While this is a very

standard trick now, back in the day it wasn’t well known, and as such this problem was very difficult. The

solution we give here will be somewhat similar, but not requiring any clever ideas.

To start off, suppose WLOG that b ≥ a. Thus the b term is the “dominant term”, and to get a small term

in the numerator we wish to eliminate that.

Q =
a2 + b2

ab + 1
=

b

a
+
− b

a + a2

ab + 1
=

b

a
+

a3 − b

a2b + a
.

Since a ≤ b, we see that either 0 ≤ a3 − b < a3 ≤ a2b < a2b + a or 0 ≤ b− a3 < b < a2b + a. In any case, we

have a “nice” term of b
a and a “nasty” term a3−b

a2b+a which satisfies∣∣∣∣ a3 − b

a2b + a

∣∣∣∣ < 1.
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In particular, Q ∼ b
a ; it is the ceiling or floor of b

a if a3 − b ≥ 0 or a3 − b ≤ 0 respectively. Thus it is natural

to write b = an + r, where n ∈ Z+ and r ∈ Z, 0 ≤ r < a. We must get Q = n or Q = n + 1, and plugging in

the expression for b yields

Q = n +
r

a
+

a3 − an− r

a(na2 + ra + 1)
= n +

(nra2 + r2a + r) + (a3 − an− r)

a(na2 + ra + 1)
= n +

a2 + nra + r2 − n

na2 + ra + 1
.

Therefore a2+nra+r2−n
na2+ra+1 = 0, 1.

If it is 0, then note our expression is linear in n and we solve to get

n =
a2 + r2

1− ar
.

But n > 0 whence 1 ≥ 1− ar > 0, so ar = 0 and thus r = 0. This gives n = a2 and Q = n = a2 is a perfect

square (this is the solution (a, b) = (a, a3)).

The other case is a2+nra+r2−n
na2+ra+1 = 1. When we multiply out, it is again linear in n, and we solve to get

Q = n + 1 = 1 +
a2 + r2 − ra− 1

a2 − ra + 1
=

2a2 + r2 − 2ar

a2 − ra + 1
=

(a− r)2 + a2

(a− r)a + 1

where a, a − r ∈ Z+. In particular, starting with the pair (a, b) = (a, an + r) we get (a − r, a) giving the

same quotient. However this decreases the sum a + b (except if a = b, where we can check (1, 1) is they only

such possibility; this gives a quotient of 1), whence we can only do this finitely many times, whereupon we

must be in the first case or a = b = 1, and the quotient is a square in both cases. Note that our solution also

describes how to find all possible pairs (a, b) where ab + 1 | a2 + b2.

3 Problems

1. a) Find infinitely many pairs of integers a, b with 1 < a < b such that ab | a2 + b2 − 1

b) For a, b as in part a), find the possible values of

a2 + b2 − 1

ab

which occur for infinitely many pairs (a, b).

2. Find all pairs of positive integers (a, b) such that

a2 + b

b2 − a
,
b2 + a

a2 − b
∈ Z

3. Consecutive positive integers m,m + 1,m + 2,m + 3 are divisible by consecutive odd positive integers

n, n + 2, n + 4, n + 6 respectively. Find the smallest possible m in terms of n.

4. Let x, y be integers such that xy + 1 | x2 + y2. Prove that if

N :=
x2 + y2

xy + 1
< 0,

then N = −5.
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5. Find all a ∈ Z such that

x2 + axy + y2 = 1

has infinitely many distinct integer solutions (x, y).

6. Find all pairs of positive integers (a, b) such that

a2b + b + 7 | ab2 + a + b

7. Find all positive integers which can be represented uniquely as

x2 + y

xy + 1
,

for x, y positive integers.

8. Let x, y be positive integers such that xy | x2 + y2 + 1. Prove that

x2 + y2 + 1

xy
= 3

9. Find all pairs of positive integers (a, b) such that

ab | a2 + b2 + 3.

NOTE: you can leave your answer in terms of a set of recursive sequences.

10. Find all pairs of positive integers (m,n) such that

n3 + 1

mn− 1
∈ Z.

11. Find all pairs of integers (a, b) such that

a2

2ab2 − b3 + 1
∈ Z+.

12. Determine all triples (a, b, c) of positive integers such that each of the numbers

ab− c, bc− a, ca− b

is a power of 2.

12’. Prove that there are no quadruples (p, a, b, c) where p is an odd prime and a, b, c ∈ Z+ such that each

of the numbers

ab− c, bc− a, ca− b

is a power of p.

12”. Let a ≤ b ≤ c be positive integers and p a prime such that each of the numbers

−(ab− c), bc− a, ca− b

is a power of p. Prove that either (a, b, c) = (pu, pu, p2u + 1) for some non-negative integer u, or a = 1.
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